甘肃专升本网 - 515148.COM

甘肃专升本网

甘肃专升本面授班
您的位置: 首页 > 考试大纲 > 兰州理工大学 > 详细内容

兰州理工大学2018年专升本专业课高等数学考试大纲

2018年03月01日来源:甘肃专升本网作者:张小本 编辑:张小本 浏览:000挑错 投稿

2018年兰州理工大学专升本考试专业课考试科目 内容来自 www.515148.com

电气工程及其自动化专业课考试科目:高等数学、电子技术基础(模拟电子技术、数字电子技术)

甘肃专升本网 www.515148.com

新能源科学与工程专业课考试科目:高等数学、机械设计基础 本文来自 www.515148.com

兰州理工大学2018年专升本专业课高等数学考试大纲 内容来自 www.515148.com

本大纲对内容由低到高,对概念和理论分为“了解”和 “理解”两个层次;对方法和运算分“会”和“掌握”两个层次。

本文来自 www.515148.com

(一)函数、极限、连续:

甘肃专升本网 www.515148.com

1.理解函数的概念;理解复合函数的概念,了解反函数的概念。会建立简单实际问题中的函数关系式。 甘肃专升本网 www.515148.com

2.了解函数的奇偶性、单调性、周期性和有界性;掌握基本初等函数的性质和图象。 本文来自 www.515148.com

3.理解极限的概念,了解 等语言。

本文来自 www.515148.com

4.掌握极限的性质与四则运算法则。 甘肃专升本网 www.515148.com

5.理解两个极限存在的准则(夹逼准则和单调有界准则),掌握用两个重要极限求极限方法。 本文来自 www.515148.com

6.了解无穷小、无穷大概念及其比较问题。会用等价无穷小求极限。

本文来自 www.515148.com

7.会求数列或函数的极限。 内容来自 www.515148.com

8.理解函数在一点连续的概念。了解间断点的概念,并会判别间断点的类型。 甘肃专升本网 www.515148.com

9.理解初等函数的连续性和闭区间上连续函数的性质(有界性、最值性、介值性、零点定理等)。 甘肃专升本网 www.515148.com

(二)一元函数微分学: 本文来自 www.515148.com

1.理解导数的概念,几何意义及函数的可导性与连续性之间的关系。

甘肃专升本网 www.515148.com

2.掌握基本初等函数的导数公, 式,掌握导数的四则运算法则和复合函数的求导法,会求反函数、隐函数、参数方程、幂指函数的导数。

甘肃专升本网 www.515148.com

3.了解高阶导数的概念,会求简单函数的高阶导数。 甘肃专升本网 www.515148.com

4.理解微分的概念。 甘肃专升本网 www.515148.com

5.了解微分的四则运算法则和一阶微分形式不变性。

内容来自 www.515148.com

6.理解罗尔定理和拉格朗日定理。了解柯西定理和泰勒定理,掌握利用洛必达法则求极限。

本文来自 www.515148.com

7.理解函数的极值与最值的概念,掌握用导数判断函数的单调性和求极值的方法,会求最值。

本文来自 www.515148.com

8.会用导数判断函数图形的凹凸性,会求拐点,了解描绘函数图形的一般方法。 本文来自 www.515148.com

9.了解曲率和曲率半径的概念并会计算曲率和曲率半径。 本文来自 www.515148.com

(三)一元函数积分学:

甘肃专升本网 www.515148.com

1.理解不定积分和定积分的概念和性质,了解原函数、不定积分、定积分的关系。

本文来自 www.515148.com

2.掌握不定积分的基本公式,不定积分、定积分的换元法与分部积分法。会求简单的有理函数和简单无理函数的积分。 内容来自 www.515148.com

3.理解变上限的积分作为其上限的函数及其求导定理,掌握牛顿——莱布尼兹公式。 甘肃专升本网 www.515148.com

4.了解广义积分的概念,会计算简单的广义积分。 内容来自 www.515148.com

5.会用定积分表达一些几何量和物理量(如面积、体积、弧长、功、引力等)的方法,能用定积分解决一些简单的几何问题及简单的物理力学问题。 内容来自 www.515148.com

(四)微分方程初步: 本文来自 www.515148.com

1.了解微分方程、解、通解、初始条件和特解等概念。 本文来自 www.515148.com

2.掌握可分离变量的方程的解法,了解齐次方程和伯努利方程及其解法。 本文来自 www.515148.com

3.会解一阶线性非齐次微分方程。

内容来自 www.515148.com

4.理解二阶线性微分方程解的结构。

甘肃专升本网 www.515148.com

5.掌握二阶常系数齐次线性微分方程的解法。

甘肃专升本网 www.515148.com

6.会求自由项形如 的二阶常系数非齐次线性微分方程的特解。

内容来自 www.515148.com

7.会用微分方程解一些简单的几何和物理问题。

内容来自 www.515148.com

(五)矢量代数和空间解析几何: 内容来自 www.515148.com

1.理解空间直角坐标系,理解矢量的概念及其表示。掌握单位矢量、方向余弦、矢量的坐标表示及矢量运算的方法。

本文来自 www.515148.com

2.了解矢量的运算(数量积、矢量积、混合积),掌握矢量垂直、平行的判定问题。 本文来自 www.515148.com

3.掌握平面的方程及其求法,会利用平面、直线的相互关系解决有关问题。

甘肃专升本网 www.515148.com

4.了解曲面方程的概念,了解常用二次曲面的方程及其图形,了解以坐标轴为旋转轴的旋转曲面及母线平行于坐标轴的柱面方程。

本文来自 www.515148.com

5.了解空间曲线的参数方程和一般方程。了解曲面的交线在坐标平面上的投影。

内容来自 www.515148.com

(六)多元函数微分学: 本文来自 www.515148.com

1.理解多元函数的概念。了解二元函数的极限与连续性的概念,以及有界闭区域上连续函数的性质。 本文来自 www.515148.com

2.理解偏导数和全微分的概念,了解全微分存在的必要条件和充分条件,理解一阶全微分形式不变性。

甘肃专升本网 www.515148.com

3.掌握复合函数的一阶偏导数的求法,会求复合函数的二阶偏导数。 本文来自 www.515148.com

4.会求由一个方程确定的隐函数的偏导数及两个方程组成的方程组所确定的隐函数的偏导数。

本文来自 www.515148.com

5.了解曲线的切线和法平面及曲面的切平面与法线,并会求出它们的方程。

本文来自 www.515148.com

6.了解方向导数及梯度的概念,会求函数的方向导数及梯度。

甘肃专升本网 www.515148.com

7.理解多元函数极值和条件极值的概念,会求二元函数的极值。了解求条件极值的拉格朗日乘数法,会求解一些简单的最大值和最小值的应用问题。 甘肃专升本网 www.515148.com

(七)多元函数积分学: 甘肃专升本网 www.515148.com

1.了解二重积分的概念、几何意义,理解二重积分的性质。

内容来自 www.515148.com

2.掌握二重积分的计算方法(直角坐标、极坐标)。

甘肃专升本网 www.515148.com

3.会用二重积分解决几何与力学中的简单问题(如面积、体积、质量、重心、转动惯量等)。

本文来自 www.515148.com

(八)无穷级数: 甘肃专升本网 www.515148.com

1.理解无穷级数收敛、发散以及和的概念,了解无穷级数基本性质及收敛的必要条件。 本文来自 www.515148.com

2.了解正项级数的概念,收敛的充要条件,掌握比较审敛法、比值审敛法及根值审敛法。 甘肃专升本网 www.515148.com

3.掌握几何级数和P—级数的收敛性。了解交错级数的莱布尼兹判别法,了解交错级数的截断误差。

本文来自 www.515148.com

4.掌握无穷级数绝对收敛与条件收敛的概念,了解绝对收敛与条件收敛的关系。

甘肃专升本网 www.515148.com

5.了解函数项级数的收敛域与和函数的概念。 甘肃专升本网 www.515148.com

6.了解幂级数在其收敛区间内的一些基本性质。掌握幂级数求和的基本理论,并会求和函数。 内容来自 www.515148.com

7.了解函数展开为泰勒级数的方法。会利用 等的麦克劳林展开式将一些简单的函数间接展开成幂级数。 内容来自 www.515148.com

8.了解幂级数在近似计算上的简单应用。 本文来自 www.515148.com

附参考书目录: 甘肃专升本网 www.515148.com

1.《高等数学》.同济大学数学教研室.高等教育出版社.第四版.1996.

甘肃专升本网 www.515148.com

2.《高等数学》.严克明.甘肃文化出版社.第一版.1996. 内容来自 www.515148.com

编辑:张小本 (挑错)/本文网址:http://www.515148.com/kaoshidagang/lanzhouligong/1621.html

------分隔线----------------------------
------分隔线----------------------------
甘肃专升本教材
甘肃专升本网微信公众号